p...
What is p value (also called significance)? How does it work? Curiously enough, many collegues at the hospital clearly know how to interpret a p value (i.e, they can tell you if a study is significant or not), but have trouble trying to explain the exact meaning of, say, a p = 0. 01.
In practice most of us would answer: if p is lower than 0.05, the result of the study is significant. If higher, non significant. Simple. But what does it mean?
So let´s go for it. Imagine we are comparing two treatments A and B. And imagine there is no real difference between A and B, in terms of their efficacy. We call p the probability that, when you perform a statistical test (whichever you need, we will try to roughly cover that in a future post), you FIND a difference by chance.
In other words, when you perform your test you have a chance that it does not show reality, but on the contrary get a false result. And, as there is no difference between A and B, that false result means that you SEE a difference.
And p value has nothing to do with the difference of the effect found (A being 10%, 30% or 70% more effective than B). You may find a tiny difference between the effectiveness of the two drugs, with a very significant p value. Or a huge difference with a clearly non significant p.
In fact p is like a friend. You can trust or not your friend (that is the p value) on what he tells you (that is the difference between A and B that you find; 2%, 25%, or whatever).
Why 0.05? Well that is a value everyone has agreed upon. It does not come from a formula or anything. When we try our test, if p= 0.05, it means that we want to be wrong once every 20 times at most.
Was this post useful to you? Would you like to talk about any specific subject? Please share your comments!
-------------------------------------------------------------------------------------------------------------------------------
p...
¿Qué es la p (también llamada significación estadística)? ¿Cómo funciona? Cusiosamente, muchos colegas del hospital saben interpretar un valor de p (por ejemplo, pueden decir si un estudio es significativo o no) pero tienen problemas para definir el significado exacto de una p de 0,01 (por ejemplo).
En la práctica, diríamos que una p menor de 0,05 es significativa, y mayor, no significativa, pero ¿que quiere decir esto?
Vamos allá. Imaginemos que tenemos dos tratamientos A y B, y que no hay diferencias en cuanto a su eficacia (son igualmente eficaces). Llamamos p a la probabilidad de encontrar una diferencia entre A y B simplemente por azar (recordemos que no hay diferencias entre A y B).
El valor de la p no tiene nada que ver con la diferencia entre tratamientos (entre A y B puede haber una diferencia de eficacia del 10 , del 30 o del 70%). Por ejemplo, se puede encontrar una diferencia muy pequeña entre A y B con una p enrormemente significativa, o una gran diferencia con una p claramente no significativa.
En realidad p es como un amigo. Lo que nos dice nuestro amigo es la diferencia entre A y B. La probabilidad de que se equivoque es la p.
¿Por qué 0,05? Por puro acuerdo. No viene de de ninguna fórmula. Cuando p= 0,05 significa que en nuestro test estadístico nos vamos a equivocar 1 de cada 20 veces.
Evidence Based Healthcare and Biostatistics for those who, as many doctors and health workers, hate numbers (thus the name of the blog). It aims to be a way to share ideas, resources, tools and training links, and a place to discuss specific health issues from an epidemiological perspective. Our desktop is a portrait of Karl Pearson (1857 - 1936), a prominent figure in Statistics and author of the book "The Grammar of Science" Please Share your comments!
Thursday, January 5, 2012
P for novices // P para novatos
Etiquetas:
p value,
significación estadística,
significance,
statistics,
valor de la p
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment